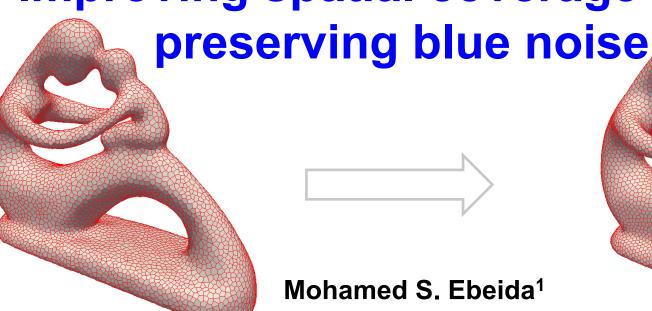


Improving spatial coverage while

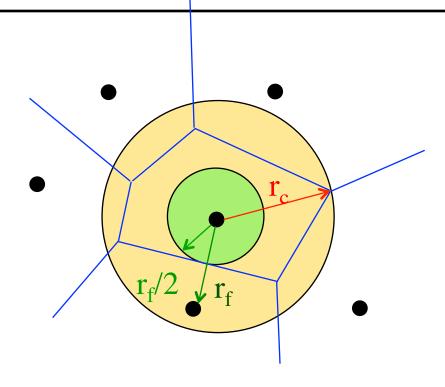


M. A. Awad², X. Ge³, A. H. Mahmoud², S. A. Mitchell¹, P.M. Knupp¹, and L. -Y. Wei⁴

¹Sandia National Laboratories, ²Alexandria University, ³Ohio-State Univ, ⁴University of Hong Kong

Siam Conference on Geometric and Phsyical Modeling November, 13th 2013

Point Sets: Well-spaced



 $r_{c = coverage}$ farthest distance from domain point to sample point

r_{f = free} shortest distance between sample points

- Well-spaced =
 - Farthest Voronoi vertex (coverage) not much farther than closest
 Delaunay neighbor (free)
 - Measured by Voronoi cell aspect ratio (A) or beta = r_c / r_f
 - beta <= 1 is often the goal for uniform distributions</p>

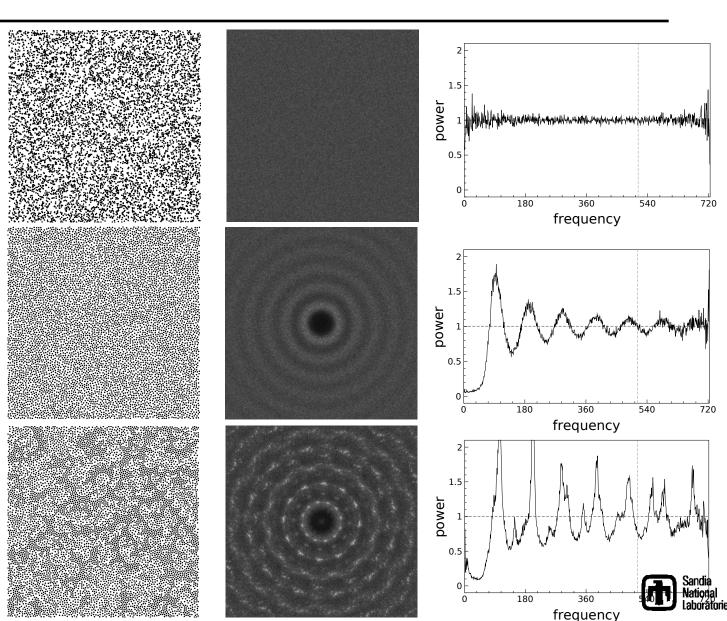
Point Sets: Random

Random
 with no
 constraints
 (white noise)

 Random with minimum separation (blue noise)

$$r_f = r_c$$

CorrelatedPointsr_f = r_c

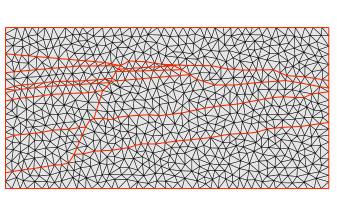


Why Do We Care?!

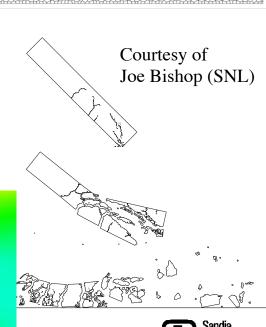
Applications for Random Well Spaced point Sets

Provably Good Meshing

- Physics simulations
 - Voronoi mesh, cell = points closest to a sample
 - Fractures occur on Voronoi cell boundaries
 - Mesh variation models material strength variation
 - CVT, regular lattices give unrealistic cracks
 - Unbiased sampling gives realistic cracks
 - Ensembles of simulations
 - Domains: non-convex, internal boundaries



Seismic Simulations maximal helps Δ quality

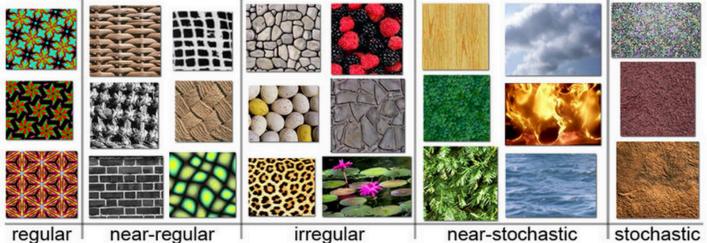


Motivating from Modern Graphics: Texture Synthesis

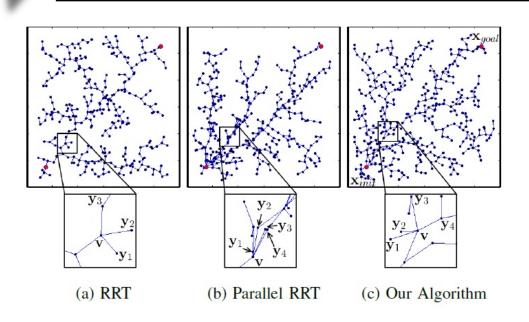
- Real-time environment exploration. Games! Movies!
- Algorithm to create output image from input sample
 - Arbitrary size
 - Similar to input
 - No visible seams, blocks
 - No visible, regular repeated patterns

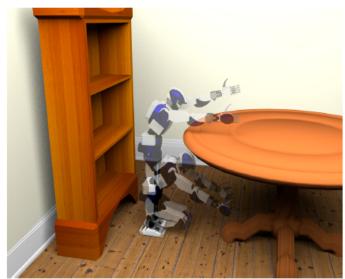
Spaghetti Li Yi Wei SIGGRAPH 2011

examples from wikipedia:



Robot Motion Planning





Real time motion planning 23 DOF

Precomputed Well-Spaced points directs parallel tree expansion and enables real-time motion planning in higher dimensions

That was the applications!

. . .

Now for the algorithms!

How can we generate a random well spaced point set?

... So We Need to Generate Random Well-Spaced Points. But How?!! Maximal Poisson-Disk Sampling (MPS)

- What is MPS?
 - Insert random points into a domain, build set X

Disk-free condition

$$\forall x_i, x_j \in X, x_i \neq x_j : ||x_i - x_j|| \ge r$$

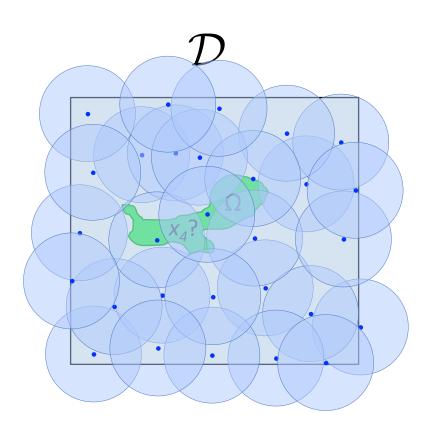
Bias-free condition

$$\forall x_i \in X, \forall \Omega \subset \mathcal{D}_{i-1}:$$

$$P(x_i \in \Omega) = \frac{\operatorname{Area}(\Omega)}{\operatorname{Area}(\mathcal{D}_{i-1})}$$

Maximal condition

$$\forall x \in \mathcal{D}, \exists x_i \in X : ||x - x_i|| < r$$



Simple Problem?!

My initial thoughts (2010):

Generate a bunch of disks in a box, sounds too simple with minor impact!

Probably I will forget about it after this project.

I was Completely wrong!

Main Published Results

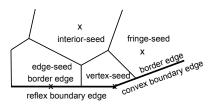
- First E(n log n) algorithm with provably correct output
 - Efficient Maximal Poisson-Disk Sampling,
 Ebeida, Patney, Mitchell, Davidson, Knupp, Owens,
 SIGGRAPH 2011
- Simpler, less memory, provably correct, faster in practice but no run-time proof
 - A Simple Algorithm for Maximal Poison-Disk Sampling in High Dimensions, Ebeida, Mitchell, Patney, Davidson, Owens Eurographics 2012

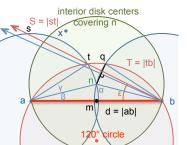
Voronoi Meshes

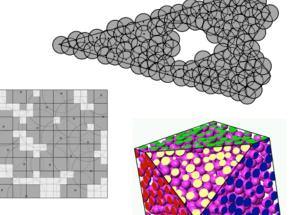
- Sites interior, close to domain boundary are OK, not the dual of a body-fitted Delaunay Mesh
- Uniform Random Voronoi Meshes Ebeida, Mitchell IMR 2011

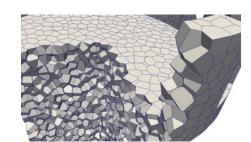
Delaunay Meshes

- Protect boundary with random balls
- Efficient and Good Delaunay Meshes from Random Points Ebeida, Mitchell, Davidson, Patney, Knupp, Owens SIAM GD/SPM 2011 → Computer Aided Design
- MPS with varying radii
 - Adaptive and Hierarchical Point Clouds
 - Variable Radii Poisson-disk sampling Mitchell, Rand, Ebeida, Bajaj CCCG 2012









Simulation of Propagating fractures

 Mesh Generation for modeling and simulation of carbon sequestration processes
 Ebeida, Knupp, Leung, Bishop, Martinez
 SciDAC 2011

Hyperplanes for integration, MPS and UQ

K-d darts,
 Ebeida, Patney, Mitchell, Dalbey, Davidson, Owens,
 TOG "to appear"

Rendering using line darts

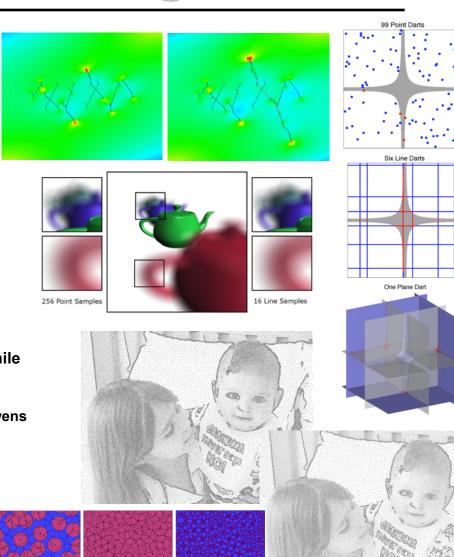
High quality parallel depth of field using line samples,
 Tzeng, Patney, Davidson, Ebeida, Mitchell, Owens
 HPG 2012

Reducing Sample size while respecting sizing function

- A simple algorithm that replaces 2 disks with one while maintaining coverage and conflict conditions
- Sifted Disks
 Ebeida, Mahmoud, Awad, Mohammad, Mitchell, Rand, Owens
 EG 2013

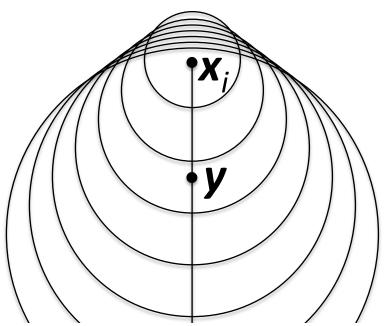
MPS with improved Coverage

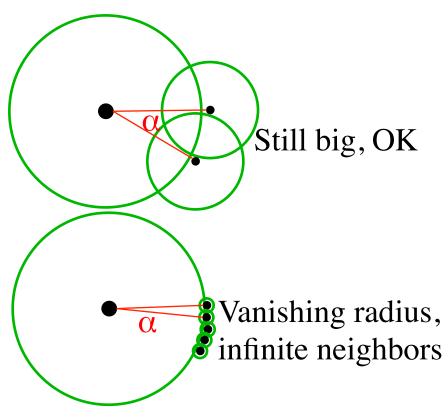
- Using $r_c < r_f$
- Improving spatial coverage while preserving blue noise Ebeida, Awad, Ge, Mahmoud, Mitchell, Knupp, Wei SIAM GD/SPM 2013 → Computer Aided Design



Prior Results: CCCG'11 How fast can radii vary?

- If varies slowly
 - bounded # neighbors for disk conflict checks <-> bounded-angle DT
- If shrink too fast
 - Unbounded # neighbors
 - Infinite run-time
 - Zero angles in triangulation

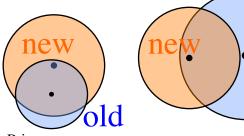




Q. How fast can it vary? A. Depends how Conflict is defined.

L is Lipschitz constant: f(x)-f(y) < L |x-y|

	Method	Distance Function	Order Independent	Full Coverage	Conflict Free	${f Edge} \ {f Min}$	$\begin{array}{c} \text{Edge} \\ \text{Max} \end{array}$	Sin Angle Min	$\frac{\mathrm{Max}}{L}$
methods	Prior	$r(\mathbf{x})$	no	no	no	1/(1+L)	2/(1-2L)	(1-2L)/2	1/2
	E Current	$r(\mathbf{y})$	no	no	no	1/(1+L)	2/(1-L)	(1 - L)/2	1
	Ö Bigger	$\max\left(r(\mathbf{x}), r(\mathbf{y})\right)$	yes	no	yes	1	2/(1-2L)	(1 - 2L)/2	(1/2)
	. ≡ Smaller	$\min\left(r(\mathbf{x}), r(\mathbf{y})\right)$	yes	yes	no	1/(1 + L)	2/(1-L)	(1 - L)/2	1

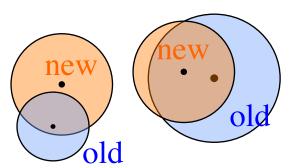


Prior:

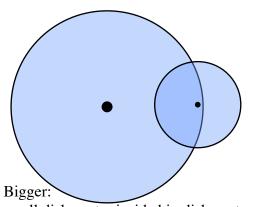
Four common

new candidate disk center inside an old prior disk

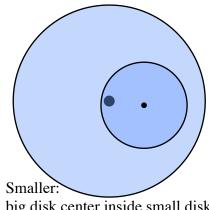
old



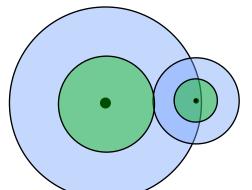
Current: old prior disk center inside a new candidate disk



small disk center inside big disk center



big disk center inside small disk center



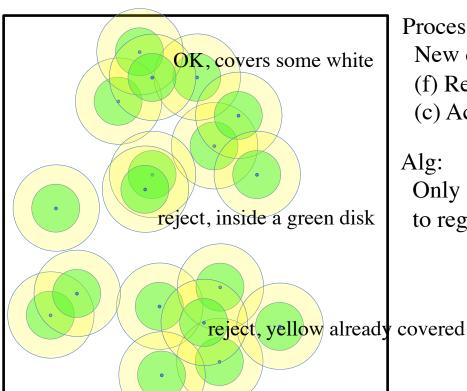
Bigger is stricter than Sphere packing: ½ radius disks overlap distance: sum(r(x),r(y))/2

Prior Results: CCCG'11 Decoupling coverage and conflict-free radii

Disk coverage radius larger than free radius

$$R_c > R_f$$
 (yellow > green)

- New disks must cover some unique uncovered area
 - Else maximal (limit) distribution would be the same
 - Contrast to Hard-core Strauss disc process: coverage disks are observed, no effect on process



Process:

New candidate point uniform at random

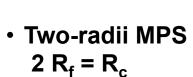
- (f) Rejected if center inside a small green disk
- (c) Accepted if its yellow disk covers some white a

Alg:

Only generate points in an outer approximation to regions satisfying (c) and (f) in the first place.

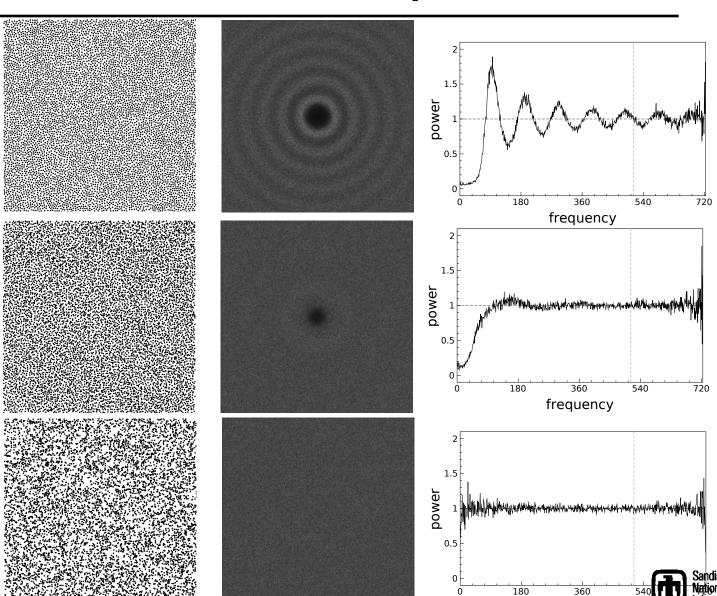
Two-radii MPS output

• Classic MPS $R_f = R_c$



- R_f = min center dist
- R_c =max Vor dist

Uniform R = 0 non-maximal

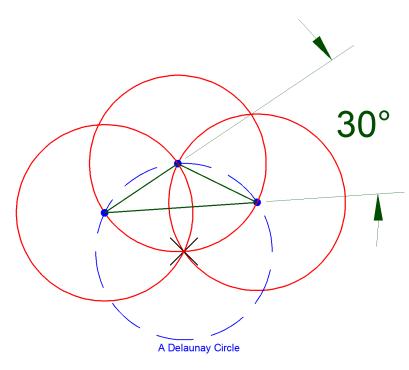


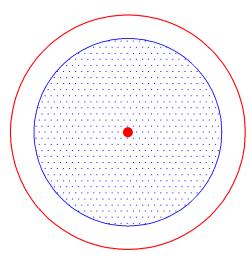
frequency

This Research: Improving spatial coverage

• $r_c > r_f$ increase randomness while degrading mesh quality

• Here we try the opposite direction $r_f < r_c$





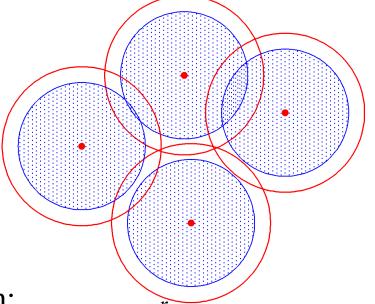
Question:

Can we decouple coverage radius from disk-free radius such $r_c < r_f$?

Current Research: Sparse MPS (under preparation)

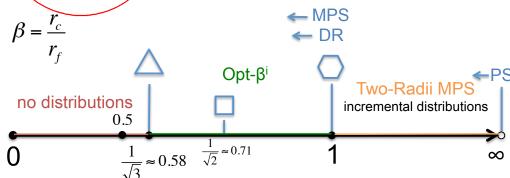
Answer: Yes, If the algorithm doesn't lead to configurations

Like this.



Unfortunately!
Vey hard to achieve via sampling due to global constraints

Impact of solution:
A tune-up parameter
to trade randomness
For better space coverage
e.g. better mesh quality

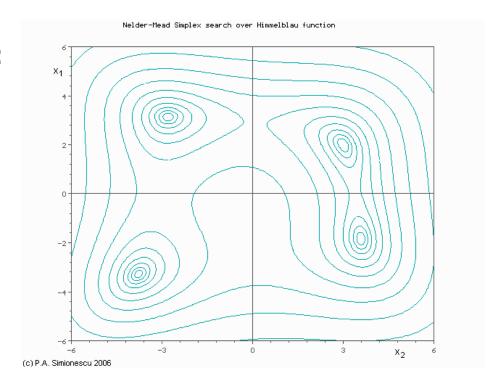


Our poor-man's solution

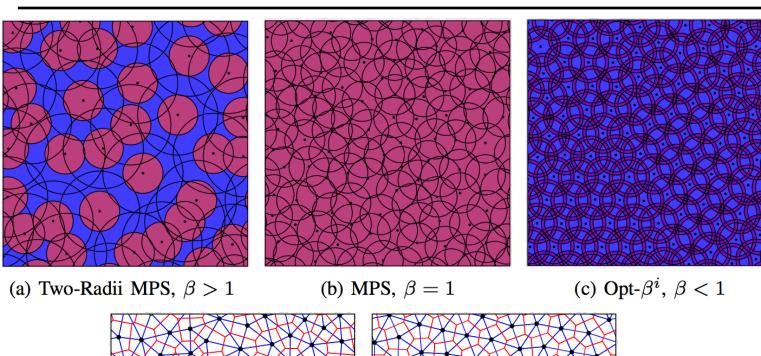
 Generate an MPS as usual and relocate points to optimize beta directly using Nelder Mead

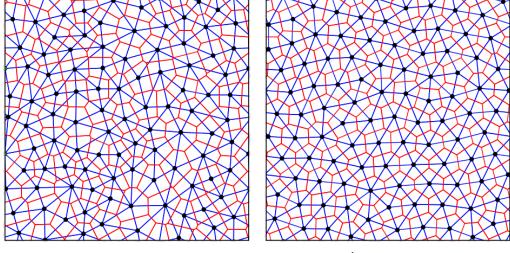
Four rules for relocating a point:

- 1. Reflection
- 2. Expansion
- 3. Contraction
- 4. Reduction



Results

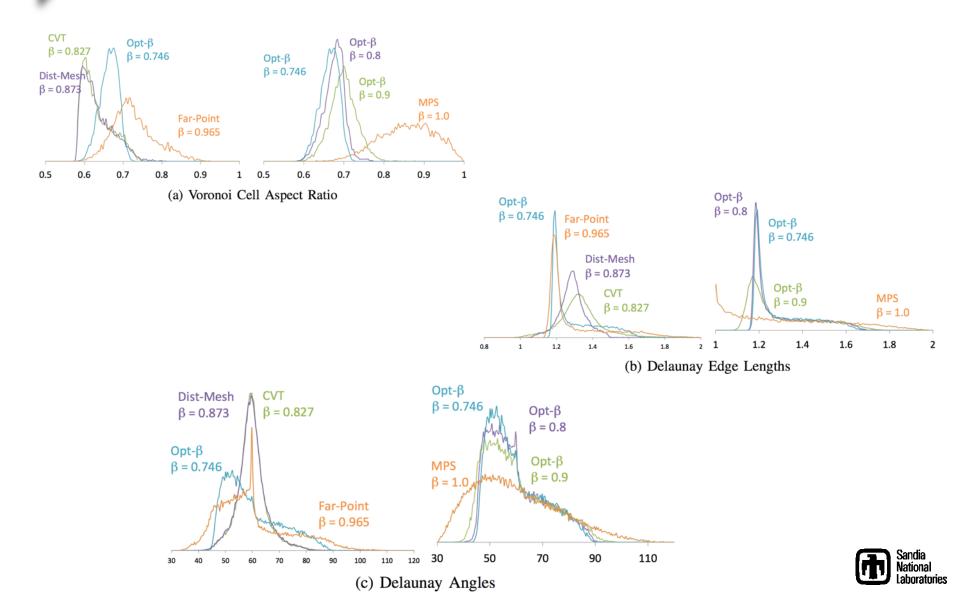




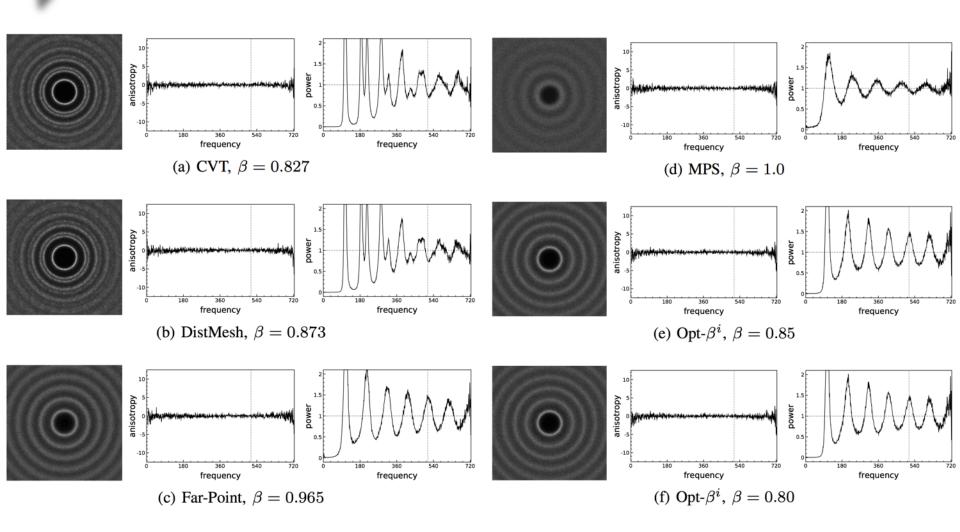
(d) MPS mesh, $\beta = 1$

(e) Opt- β^i mesh, $\beta=0.746$

Results: Impact on Mesh Quality



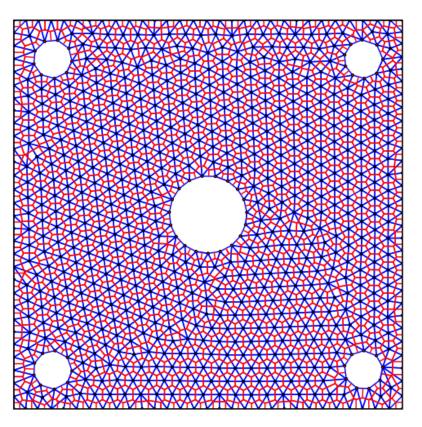
Impact on Noise



Impact on Noise



Results: Non-convex domains



(e) DistMesh, $\beta = 1.089$

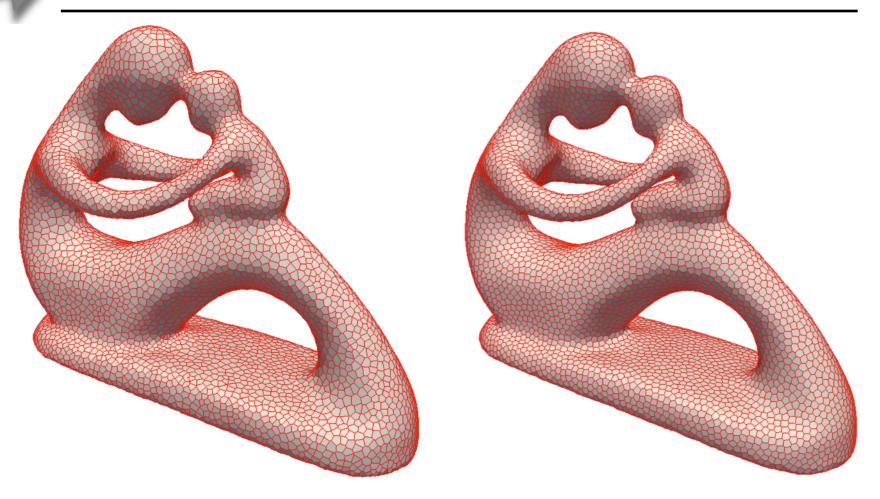
Algorithm	β	$rac{r_c}{r_{ ext{MPS}}}$	$rac{r_f}{r_{ ext{MPS}}}$	$\min lpha$	$\max \alpha$
MPS	1.0	1.0	1.0	31	115
CVT	1.226	0.931	0.759	24	103
DistMesh	1.089	1.012	0.929	31	114
Far-Point	1.048	1.043	0.996	32	106
Opt- eta^i	0.988	0.995	1.007	32	110

(a) Coarse mesh, $r_{\rm MPS}=0.0314$, Fig. 10 left column.

Algorithm	β	$rac{r_c}{r_{ ext{MPS}}}$	$rac{r_f}{r_{ ext{MPS}}}$	$\min lpha$	$\max \alpha$
MPS	1.0	1.0	1.0	30	117
CVT	1.02	0.989	0.852	33	96
DistMesh	1.07	0.869	0.925	34	107
Far-Point	1.06	1.106	1.047	31	113
Opt- eta^i	0.932	0.939	1.008	34	99

(b) Fine mesh, $r_{\text{MPS}} = 0.0157$, Fig. 10 right column.

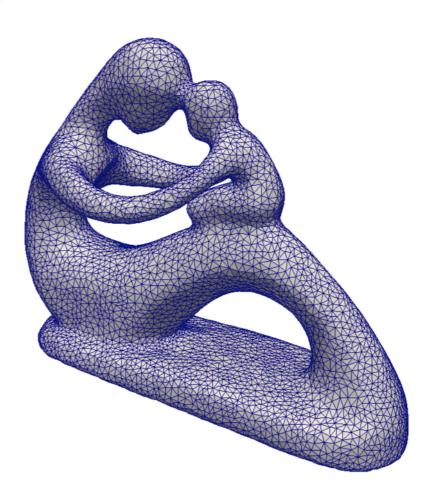
Results: Curved Surfaces



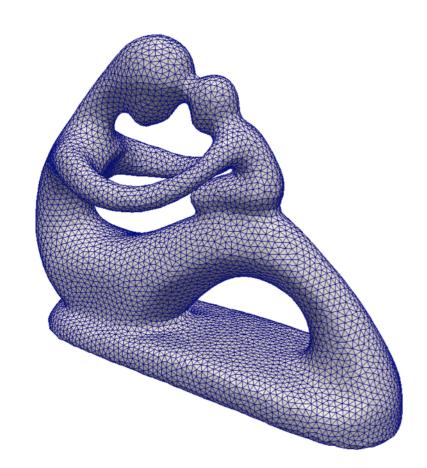
(b) Voronoi input mesh

(d) Voronoi after convergence

Results: Curved Surfaces

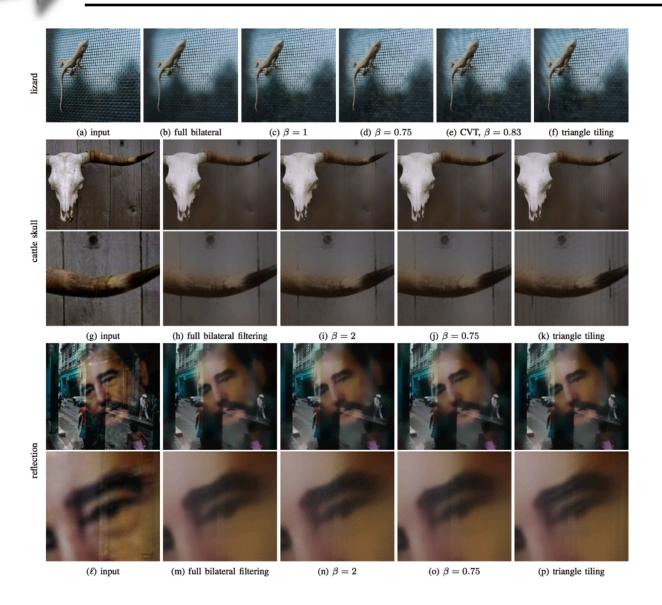


(a) Delaunay input mesh



(c) Delaunay after convergence

Results: Impact on bilateral filtering



Sub-sampling accelerated bilateral filtering. $\beta = 0.75$ achieves the right balance between uniformity (reducing noise) and randomness (avoiding aliasing). Notice the noisier results with less uniform sampling ($\beta = 2.0$) and more aliasing with more regular sampling (CVT and triangle tiling). For the skull and reflection cases, we show both the whole images and partial zoom-ins.

Summary and Future Work

- This paper introduced a Well-spaced Blue-noise Distribution WBD, with $\beta = r_c/r_f$ measuring coverage uniformity or well-spacedness.
- We proposed the Opt-β algorithm to change a random point set to a WBD; blue noise is preserved up to β ≈ 0.75.
- Extension to higher dimensions esp. impact on slivers is our next step
- Investigate sampling solutions to the Sparse MPS problem.

Thanks! ... Questions?

